Learning Frameworks in NLP (1/2)

1. Intro

최근에 KoLIMA라는 사이드 프로젝트를 하나 시작했습니다. 2023년 5월에 Meta AI에서 발표한 LIMA: Less Is More for Alignment라는 모형에서 사용한 방법론이 한국어 언어 모형에도 적용 가능한지 확인해보고자 하는 목적에서 진행하는 프로젝트입니다.

Read more

Knowledge Integration in Language Models

들어가며 Intro

최근 OpenAI의 ChatGPT로부터 시작된 언어모형에 대한 관심이 뜨겁습니다. 마치 알파고와 이세돌 9단 사이의 바둑 대국 이후에 일어났던 인공지능 분야에 대한 관심이 재현된 것만 같네요. ChatGPT가 이러한 뜨거운 관심을 받고 있는 이유는, 마치 사람과도 같은 자연스러운 문장을 생성할 수 있을 뿐만 아니라, 일반적인 질의 응답을 넘어서 간단한 추론, 연산, 프로그래밍 등의 같은 다양한 작업들을 수행할 수 있기 때문으로 보입니다. 그러나 ChatGPT에도 여전히 극복해야할 다양한 문제점들이 남아있으며, 대표적인 과제 중 하나는 바로 언어 모형의 신뢰성Reliability에 대한 부분입니다. 이 글에서는 언어 모형이 사실에 기반하지 않은 내용을 마치 사실처럼 지어내는 환각 현상Hallucination에 대해 알아보고, 이를 완화하기 위해 어떤 방법들이 연구되어 왔는지 간단하게 리뷰해보도록 하겠습니다.

Read more

Weekly-NLP, Introduction

공부했던 내용을 정리하고 기록으로 남기고자 하는 목적으로 글을 작성해 보고자 합니다. 이 시리즈는 크게 두 파트로 나뉘어질 예정입니다. 첫번째 파트에서는 NLP Tasks를 모델링하기 위한 기본적인 지식들에 대해서 다루며, 다음과 같은 개념들에 대해 살펴볼 예정입니다.

  • Language Models
  • Word Dependencies and N-gram Model
  • RNN
  • LSTM
  • Sequence to Sequence (Encoder and Decoder) Architecture
  • Attention
  • Transformer blocks and Transformer
Read more