
Conversational Topic Segmentation with

Clustering-based Intermediate Training

Taeseung Hahn
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Informatics

School of Informatics

University of Edinburgh

2022



Abstract

Topic segmentation is a fundamental NLP task that breaks down the structure of

texts into semantically coherent segments. It can enhance the readability of a text and

improve downstream NLP tasks such as summarization and retrieval. Recent studies

have shown that it is highly effective to fine-tune a hierarchical neural segmentation

model, comprising a pre-trained sentence encoder and a segment predictor, on an

automatically annotated written text dataset. Nevertheless, in conversational topic

segmentation, securing sufficient labels for fine-tuning is difficult because this is highly

dependent on manual annotation. As a result, the segmentation model fine-tuned on

conversational data performs considerably below its potential. It has been studied that

aligning the tasks in two training phases can reduce the minimum amount of labels

required for fine-tuning. Accordingly, this work suggests applying clustering-based

intermediate training to the topic segmentation model, which bridges the gap between

different tasks in pre-training and fine-tuning.

This work shows that clustering-based intermediate training can improve the segmen-

tation performance for conversational data. The intermediate labels generated through

clustering show a considerable correlation with the final task labels. In simulated

low-resource situations, intermediate training is most effective when the proportion of

labelled data is very small. Additionally, we investigate the effect of clustering algorithm

settings on intermediate training. The effectiveness of intermediate training changes

according to the hyper-parameter: the number of clusters k. When the number of clusters

is excessively small, the cluster information is less informative for the segmentation task.

In contrast, as the number of clusters increases several redundant clusters are generated

which cause unnecessary noise. Finally, we empirically demonstrate that researchers

can exploit their knowledge of the test domain to optimise the hyper-parameter k. The

intermediate training was most effective when k was set based on the ground truth

number of topics in the dataset.
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Chapter 1

Introduction

1.1 Motivation

Topic segmentation is a fundamental NLP task that divides a given text into topically

coherent pieces. This task is illustrated in Figure 1.1, where a Wikipedia text and a

meeting script are divided into several segments. In the meeting script, the topic changes

from the ‘opening’ to ‘participant roles’ and then to the ‘existing products’. Topic

segmentation has received considerable attention due to the following benefits. First,

topically segmented text can provide better readability. It is not easy to read and com-

prehend lengthy, unstructured text. The document structure generated by segmentation

can make it easier to comprehend the overall flow of the text. In addition, it has been

shown that many other downstream NLP tasks can take advantage of text segmentation

including text summarisation [49, 7], information retrieval [39] and topic classification

[53]. It can be distinguished from topic classification in that topic segmentation aims to

find segment boundaries, whereas topic classification predicts which of the predefined

topics a given text belongs to. In this project, we focus on topic segmentation rather

than topic classification.

Text data can be largely divided into two different types: written text and conversa-

tional data. The written text refers to well-structured data such as books, news articles,

blog posts and Wikipedia. In contrast, conversational data refer to text transcribed from

conversations between two or more people. Typical examples of conversational data

include scripts from business meetings or customer contact centres. Conversational

data have several characteristics that are different from written text; it is not only less

structured but also includes nonstandard and colloquial expressions [48]. In addition, it

tends to contain fewer keywords and sentences that strongly indicate the topics. These

1



Chapter 1. Introduction 2

Figure 1.1: Topic segmentation on written text (Left) and conversational data (Right),

where the dashed lines indicate topic changes.

characteristics make topic segmentation for conversational data more challenging; they

also make it ineffective to apply a model trained on written text to conversational

data. A remarkable property of conversational data that we noted in this project is that,

compared to written text, it is more difficult to obtain topic-annotated data. This is

because structural elements such as headings, sections, and paragraphs in written text

can be utilised as automatic topic annotation, whereas conversational data usually do

not contain these structural elements without manual annotation.

Despite these challenges, conversational topic segmentation has many potential

benefits in applications. For example, it can prevent the need to read the entire meeting

script but provide an understanding of the flow and key points discussed during the

meeting. As another example, topic segmentation of transcripts from a customer contact

centre can provide an understanding of the typical patterns experienced during these

calls, which can improve customer experience [18]. Furthermore, an increasing amount

of conversational data has become available. As remote work becomes more common,

video conferencing platforms have experienced significant increases in daily participants

[25], many of which have recording and transcribing functions. Additionally, the market

value of contact centre software with similar features is predicted to expand at a

compound annual growth rate of 23.2% [17]. With the potential benefits of application

and the growth of available data, there is an imminent need for research on methods

that improve conversational topic segmentation models by overcoming the paucity of

labelled data.
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1.2 Problem Statement and Objectives

Despite the potential advantages of conversational data, previous studies have primarily

focused on segmenting written text. As mentioned above, it is ineffective to apply

the models trained on written texts to conversational topic segmentation because of

their characteristic differences. Additionally, training a topic segmentation model on

conversational data may result in limited performance due to the paucity of labelled

data. This is because the annotation of conversational data depends primarily on hand

labelling due to the lack of structural elements such as headings and section titles.

This project aims to verify that the conversational topic segmentation model can be

improved by introducing clustering-based intermediate training. Recent studies have

demonstrated that intermediate training, inter-training in short, between pre-training and

fine-tuning can enhance the performance in the final task. Shnarch et al. showed that

clustering-based inter-training can improve classification performance at the document

level, especially when the document labels are scarce [38]. However, it remains unclear

whether inter-training can improve classification tasks at the sentence level, which is an

important part of topic segmentation. In addition, the research showed that inter-training

was effective for document classification tasks on topical datasets but less effective

on non-topical datasets. Although topic segmentation involves topics, it is a task that

predicts segment boundaries, not the topics themselves. Therefore, it is also not certain

whether clustering-based intermediate training will also be effective for this task. This

project aims to explore these unaddressed research gaps. Additionally, we examine

the effect of clustering settings on intermediate training. Finally, we also explore the

usefulness of prior knowledge to maximize the effectiveness of intermediate training.

In summary, this project aims to answer the following research questions:

1. Can the clustering-based intermediate training improve performance on the seg-

mentation task for conversational data?

2. Can we exploit our knowledge of the test domain during clustering to generate

better intermediate labels?

The detailed meaning and underlying assumptions that need to be verified are

clarified again after introducing the methodology of this project.
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1.3 Contributions

With the results of designed experiments, this work showed that clustering-based inter-

mediate training can help improve topic segmentation performance for conversational

data. The intermediate labels generated through clustering showed a considerable

correlation with the final task labels. In the simulated low-resource conditions, the

inter-training was more effective when the proportion of labelled data is small. In the

experiment, the evaluation metric Pk has decreased by 8% from 0.2969 to 0.2731, when

the proportion of labelled data is 10%.

In addition, the experiments showed that the effectiveness of intermediate training

can vary depending on the hyper-parameter setting in clustering. When the number of

clusters k was small, the cluster information was less informative on the segmentation

task. In contrast, when the number of clusters increased, distinguishing certain several

clusters did not provide useful information for the final task. These redundant clusters

caused unnecessary noise and hurt the final performance. Finally, we empirically

demonstrated that researchers can leverage their knowledge of the test domain to

optimise the hyper-parameter. Specifically, we set the number of clusters based on the

ground truth number of topics, which showed the best performance compared to other

settings.

1.4 Dissertation Structure

Chapter 2 provides a high-level overview of the background knowledge within the field

of topic segmentation as well as the methods used to introduce intermediate training.

Chapter 3 illustrates the dataset used in this project and clarifies the terms and the topic

segmentation task. Chapter 4 describes our experimental design, including the baseline

model architecture and the training process setups in detail. Chapter 5 presents the

results obtained from the experiment and provides an analysis of the results. Finally, we

conclude by summarising the findings and limitations and suggest future work.



Chapter 2

Background and Related Work

This chapter presents a high-level overview and background knowledge concerning the

topic segmentation and intermediate training. First, we describe the paucity of labels

for conversational data and the general frameworks that have been proposed to address

this problem. Then, we describe the standard transfer learning setup, and advanced

fine-tuning, which is proposed to reduce the minimum amount of labels required for

fine-tuning. Subsequently, we review previous unsupervised, supervised, and semi-

supervised topic segmentation models. Finally, we examine the evaluation and metrics

for topic segmentation.

2.1 Paucity of Labelled Data

The lack of labelled data is a critical bottleneck when improving topic segmentation

performance, especially for conversational data. This paucity is the reason that an

additional method to utilize unlabelled samples is required for the task. In this section,

we investigate why it is difficult to obtain large amounts of labelled samples from

conversational data and explore general learning frameworks to mitigate this problem.

2.1.1 Manual and Automatic Annotation

Annotations can be divided into two types: manual annotation and automatic annotation.

As its name implies, manual annotation involves human annotators. The label for

each sample in the dataset is tagged by annotation experts, which is costly and time-

consuming. In contrast, automatic annotations generate labels by using meta-data within

the dataset. For example, during the text segmentation task, structural information such

5
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as headings, sections, and paragraph titles can be used as labels to distinguish the topics

that each textual unit discusses. To ensure sufficient labelled data for topic segmentation

of written text, various datasets including Wiki727k [26] and WikiSection [3] have

been proposed, most of which are based on large corpus such as Wikipedia. Recent

neural network-based topic segmentation models heavily depend on these automatically

annotated training datasets. It has been demonstrated that models trained on these large

labelled datasets have made significant performance improvements.

However, automatic annotation is not generally available for conversational data.

This is because conversational data are primarily obtained through automatic speech

recognition (ASR) and do not contain any structural information that can be used as

labels. In addition, segmenting conversational data with models trained on written text

data is ineffective due to the differences between the conversational and written text

[48]. Therefore, a method that improves the performance with only a small amount of

labelled conversational data or a method that leverages unlabelled data to improve the

performance is greatly needed in conversational topic segmentation.

2.1.2 Learning Frameworks

Various learning frameworks have been proposed to alleviate the paucity of labelled

data, including self-supervised, semi-supervised, and weakly-supervised learning.

• Self-supervised learning: a learning framework in which the model trains itself

to learn one part of the input from another part of the input [36]. In this learn-

ing framework, an unsupervised problem can be transformed into a supervised

problem with auto-generated pseudo labels.

• Semi-supervised learning: a learning framework that is used when a fraction of the

data is labelled [28]. The pseudo label for unannotated samples can be generated

through a weak classifier trained on annotated samples or an unsupervised method

such as clustering.

• Weakly-supervised learning: a learning framework in which the given labels are

noisy [22]. The noisy labels can be either generated in a self-supervised manner

or separately obtained from another source.

Each approach has its own advantages and disadvantages. Although self-supervised

learning does not require labelled data, it also cannot leverage labels even when they
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are available. Semi-supervised learning provides a way to use not only labelled but

also unlabelled data. Weakly-supervised learning is often more robust when using low-

quality labels, which can be more easily obtained. Notably, several learning frameworks

can be jointly employed to develop a model that addresses a specific downstream task.

For example, the pre-training described in the next section is based on self-supervised

tasks, and the pre-trained language model can then be further updated for another task

in a semi-supervised manner.

2.2 Transfer Learning and Advanced Fine-tuning

2.2.1 Pre-trained Language Models and Fine-tuning

It is difficult to secure sufficient labelled data for a number of NLP tasks in practical

settings. A recent common approach for addressing this issue is to adopt a pre-trained

language model, e.g., ELMo [34] or BERT [11], which has shown success in various

tasks. A pre-trained language model is a model trained on a large generic corpus to

learn general linguistic knowledge. It can be fine-tuned for other downstream tasks with

task-specific data. The paradigm of pre-training and fine-tuning is described in the next

paragraphs, taking BERT as an example.

Figure 2.1: Pre-training and Fine-tuning of BERT [11]. (Left) BERT is trained on Masked

Language Modelling and Next Sentence Prediction tasks in pre-training. (Right) BERT is

trained on downstream tasks with the task-specific data in fine-tuning.

BERT, which stands for Bidirectional Encoder Representations from Transformers,

is a transformer-based neural network language model trained on BooksCorpus [52]
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and English Wikipedia. As illustrated at the left of Figure 2.1, it is trained on two

different, but related tasks: Masked Language Modelling(MLM) and Next Sentence

Prediction(NSP). In MLM, 15% of the tokens in the input are randomly masked and the

objective of the task is to predict these hidden tokens. The objective of NSP is to predict

whether two given sentences come from the consecutive text or not. Notably, these two

pre-training tasks do not require manually labelled data. In other words, they can be

considered tasks that are based on self-supervised learning. It has been demonstrated

that, with MLM and NSP tasks, a pre-trained language model can learn a rich hierarchy

of general linguistic information such as syntax, semantics and contextual relations

between words [23]. Regarding the field of topic segmentation, Solbiati et al. showed

that the knowledge learnt from pre-training can also benefit topic segmentation models

[41] and many other previous studies introduced pre-trained language model into their

model architectures [26, 5, 51, 31, 50, 30].

Although a pre-trained language model can learn general linguistic knowledge, the

final target task is different from those of pre-training in many downstream tasks. For

example, the segment boundary classification task in text segmentation is different from

MLM or NSP in BERT pre-training. In addition, the distribution and characteristics of

the final target dataset may be different from those of the large generic corpora used in

pre-training. Therefore, it is necessary for the pre-trained model to learn task-specific

knowledge. To this end, the pre-trained weights can be further updated on task-specific

data and objectives. This training process is called fine-tuning, which is illustrated at

the right of Figure 2.1. Notably, unlike pre-training, fine-tuning may require labelled

data. This paradigm, which consists of pre-training and fine-tuning, is referred to as a

standard transfer learning setup, in that it seeks to transfer knowledge obtained from

the source task to the target task. The word “standard” is used to distinguish it from the

setup with advanced fine-tuning, which is described in the next section.

2.2.2 Advanced Fine-tuning

Recent studies have found that the more different the tasks and data distribution in

pre-training and fine-tuning are, the less effective the standard transfer learning setup

is [21, 46]. This phenomenon becomes more pronounced when the labelled data for

fine-tuning is not sufficient. In other words, if the data distributions and tasks are similar,

the model can be optimised for the final task with only a small amount of labelled

data. Hence, advanced fine-tuning have been proposed to bridge the gap between the
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tasks and data distributions of each training phase. It includes adaptive fine-tuning and

behavioural fine-tuning, which are presented in the next paragraphs.

Adaptive fine-tuning is a method for bridging the different data distributions in

pre-training and fine-tuning. In this training setup, before the fine-tuning, the pre-trained

model is further trained on task-specific data with pre-training objectives such as MLM.

This additional training, i.e., intermediate training, does not require task-specific data to

be labelled because the pre-training task is performed in a self-supervised manner as

described earlier. In contrast, behavioural fine-tuning is performed to bridge the different

tasks in two training phases. During the behavioural fine-tuning, the pre-trained model

is trained with labelled data for a task similar to the final target task in fine-tuning. The

labelled data may be obtained separately from the target dataset. Alternatively, pseudo

labels can be generated from the target dataset in a self-supervised manner.

The effectiveness of diverse intermediate training has been studied on various

NLP tasks. Glavaš and Vulić showed that explicitly injected syntax via intermediate

dependency parsing training can benefit downstream language understanding tasks

[16], e.g., natural language inference, paraphrase identification, and commonsense

reasoning. They utilised Universal Dependencies Treebank dataset for intermediate

training. Garg et al. showed a Transformer model with intermediate behavioural fine-

tuning improves stability [13]. They used the ASNQ dataset for intermediate training,

which was generated by transforming Natural Questions Corpus [27] to the target task.

These studies focused on improving the performance and stability of the fine-tuned

model without increasing the model size, utilising separately obtained large datasets in

the intermediate training. However, it is scarcely possible to additionally obtain a large

labelled dataset concerning the conversational topic segmentation.

Conversely, Arase and Tsujii generated a phrasal paraphrases dataset for interme-

diate training, by applying the alignment method [1] on the target dataset [2]. They

showed that BERT can generate better representations for semantic equivalence as-

sessment by explicitly injecting phrasal paraphrase relations via intermediate training.

Shnarch et al. demonstrated that advanced fine-tuning can improve the performance of

document classification tasks [38]. They experimented with adaptive fine-tuning via

additional Masked Language Modelling on target data and behavioural fine-tuning with

pseudo-label. The pseudo-label was generated by applying a clustering algorithm to the

target dataset. They showed that BERT with clustering-based intermediate training can

significantly improve document classification performance in topical datasets.

In the context of conversational topic segmentation, we note clustering-based inter-
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mediate training for the following reasons:

• It does not require an additional large dataset related to the target task.

• It generates intermediate labels via a clustering algorithm. Clustering is a general

method that can be applied to most datasets, including conversational data.

We expect that the topic segmentation model can be improved through clustering-

based intermediate training, based on the assumption that the cluster label classification

task is related to the segment boundary classification task. That is, we assume cluster

labels are related to the segment labels. In addition, unlike the experiments from Shnarch

et al., the clustering is performed at the utterance level rather than the document level

because the objective of the task is to predict if each utterance is a segment boundary.

The definition of an utterance and document are presented in Section 3.1.1.1. The

objectives of this project include verifying if clustering at the utterance level can

generate intermediate labels correlated with the segment boundary labels.

2.3 Topic Segmentation

Topic segmentation is the task of dividing a given text into a linear sequence of topi-

cally coherent units. A wide variety of methods from different perspectives have been

proposed to address this task, and they can be roughly divided into supervised and

unsupervised approaches. More recently, several models for mitigating the paucity of

labelled data have been proposed.

2.3.1 Unsupervised Models

Because of the paucity of labelled training samples, earlier studies on topic segmentation

focused on unsupervised approaches, and they usually involved exploiting text similarity

measures. A very well-known earlier model is TextTiling [19], which utilises lexical

co-occurrence and distribution. It consists of three parts: Tokenisation, Lexical scoring,

and Boundary identification. Each of the parts is described as follows:

• Tokenisation divides the given input text into individual lexical units.

• Lexical scoring computes lexical scores based on lexical similarity within the

adjacent sentences.

• Boundary identification involves identifying boundaries based on depth scores.

The depth scores indicate how rapidly the lexical cohesion between two adjacent

sentences decreases.
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That is, TextTiling is based on a simple assumption that when the topic changes,

the lexical distribution changes as well. C99 uses cosine similarity to calculate the

inter-sentence semantic similarity [9] and LCSeg employs lexical chains to segment

texts [12]. Despite minor differences in the way similarity is calculated, these methods

are common in that they exploit text similarity measures to identify segment boundaries.

Despite the advantages of not requiring labelled data, unsupervised models have

reported limited performance compared to supervised models [3, 5, 51]. The critical

drawback of these approaches is that labelled samples cannot be utilised even when

they are available.

2.3.2 Supervised Models

Recent studies in the field of NLP have demonstrated that formulating problems as a

supervised learning task for large amounts of labelled data is significantly effective

compared to non-supervised or heuristic-based methods [26]. Several studies on topic

segmentation have shown remarkable progress in the same manner, especially by

devising supervised neural models. Accordingly, there have been many efforts to secure

sufficient labelled data [9, 12, 8, 14]. The most recent datasets are Wiki-727k [26] and

WikiSection [3], which were derived from a large corpus, namely, Wikipedia.

Based on these large datasets, many supervised topic segmentation models have

been proposed. Most of the recent remarkable models are based on hierarchical neural

networks and formulate topic segmentation as a binary classification problem. These

models generally consist of two sub-networks: The lower-level sub-network, a sentence

encoder, aims at generating contextualised sentence representation from word represen-

tations. The upper-level sub-network is a label predictor, that predicts whether the given

sentence is a segment boundary based on the generated sentence representation.

Many of these models have adopted long short-term memory (LSTM) [20] and

its variants in their architecture. Koshorek et al. used a bidirectional LSTM and max

pooling to obtain sentence embeddings for the sentence encoder [26]. At approximately

the same time, Badjatiya et al. approached topic segmentation in a similar manner, but

they used attention-based Bi-LSTM to make the model better consider the context of

each sentence [4]. Following these studies, Xing et al. proposed a coherence-related

auxiliary task to better model the context [51]. Additionally, they expanded the idea of

restricted self-attention proposed by Wang et al. [47] from the word level to the sentence

level so that the model absorbs more information directly from adjacent sentences. This
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restriction can enhance topic segmentation because segment boundaries do not greatly

depend on long-distance content and thus, long-distance signals may cause unnecessary

noise. In addition, a pre-trained BERT encoder was also added to the sentence encoder

to improve the model’s generality.

The Transformer architecture [44] has been widely adopted for sub-networks in

more recent models. Glavaš et al. proposed a model known as Coherence-Aware Text

Segmentation (CATS) [15], in which a two-level Transformer is devised to obtain trans-

formed sentence representations instead of Bi-LSTM. Similar to prior studies, they also

noted that textual coherence is inherently tied to text segmentation. In addition, to make

the model better consider textual coherence, the segmentation objective is augmented

with the coherence-based objective. They demonstrated that the two-level Transformer-

based model outperforms LSTM-based models and that auxiliary coherence modelling

can further improve the performance. Then, Lo et al. proposed Transformer2, which has

similar architecture to CATS [30]. It uses Transformer blocks on both the bottom-level

sentence encoder and upper-level segmentation model. The augmented loss for predict-

ing segment labels and topic labels is used to train the segmentation model. In other

words, Transformer2 predicts not only the segment boundaries but also the topic of the

segments.

Although these models have demonstrated remarkable performance, they require

large amounts of labelled data for training. Accordingly, these models have limited

performance in conversational topic segmentation, for which labelled data is scarce.

Therefore, additional methods for alleviating this issue are required.

2.3.3 Models Mitigating Paucity of Labelled Data

The learning frameworks described in Section 2.1.2 can help to address the paucity of

labelled data in conversational topic segmentation. Wang et al. proposed an intuitive

strategy that automatically generates a pseudo training dataset for supervision [45].

Similarly, Xing and Carenini proposed a strategy to create a training dataset for the

utterance-pair coherence scoring task based on two assumptions [50]. They assumed that

adjacent utterances and utterances in the same segment should have higher coherence.

In other words, they formulated a coherence scoring task in a self-supervised manner

without labelled data and utilised the coherence score to finally identify segment

boundaries. Soleimani and Miller proposed semi-supervised multi-label topic models

for document classification and sentence labelling [42]. Although this model primarily
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aims to extract textual units that are relevant to a specific topic from an entire document,

topic inference at the sentence level can also be conducted. The topic segmentation can

be performed based on the predicted topic for each sentence. More recently, Takanobu

et al. proposed a neural topic segmentation and labelling model based on reinforcement

learning, in which segmentation is formulated as a weakly-supervised learning task

[43].

The model proposed in this project can be considered another approach to alleviating

the paucity of labelled data, by bridging the gap between pre-training and fine-tuning

tasks via intermediate training. It is based on a semi-supervised framework in that it

leverages not only labelled but also unlabelled samples in the intermediate training, and

then trains the model on labelled samples in the fine-tuning phase.

2.4 Clustering Algorithm: k-means

Clustering is the task of dividing a set of objects into several coherent groups so that

similar objects are contained in the same group. There are several algorithms that

perform this task because clustering is a general grouping task. k-means clustering is

one of the most common clustering algorithms, which has many variants. It is notable

that clustering algorithms, including k-means, are usually unsupervised methods, which

means that the clustering process can be applied not only to labelled samples but also to

non-labelled samples.

k-means clustering is an iterative algorithm that aims to find a local optimum in

each iteration. After the initialisation of centroid locations, it iterates the following two

processes until a specific termination condition is met.

1. Assign each data point into the cluster whose centroid is closest to the data point.

2. After assigning all data points into the clusters, the centroids of every cluster are

re-computed.

The result of k-means clustering can be changed depending on the settings including

centroid initialization strategy and the number of clusters. In the experiment, we use ‘k-

mean++’ as our default initialization strategy. In terms of cluster counts k, the objectives

of this project include investigating how k changes the effectiveness of the inter-training.

The detailed settings for clustering in this project are presented in Section 4.2.3.
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2.5 Evaluation of Topic Segmentation

In this work, topic segmentation is defined as a binary classification problem; more

precisely, it is a sequence labelling task at the utterance level. There are a few classical

metrics that are widely used for classification problems, including accuracy, precision,

recall, and F1 score. However, these metrics have limitations in that they only can mea-

sure if the predictions are correct but cannot measure how close incorrect predictions are

to the ground truth. In topic segmentation, predictions near the true segment boundary

should be regarded as better predictions than those far from the ground truth.

To avoid the limitations of classical metrics, Beeferman et al. proposed Pk score

[6], which is used as the evaluation metric for topic segmentation in this project. Pk is

a sliding window-based probabilistic metric, based on the notion that one segmenter

is better than another if it can better identify when two sentences belong to the same

topic. It measures how many mismatched pairs of sentences exist between the predicted

segmentation and the ground truth. k indicates how far apart the two sentences in a

pair are. The detailed meaning of Pk is described in the next paragraph, taking the

segmentation illustrated in Figure 2.2 as an example.

Figure 2.2: Pk is a window-based error metric. It measures how close the predicted

segmentation is to the ground truth segmentation.

In Figure 2.2, the rectangles and their colour indicate sentences and topics. The

black vertical bars indicate topic changes. There are nine sentences with three topics in

the figure. Therefore, we can obtain five sentence pairs with k=4. The total number of

pairs, five, becomes the denominator of Pk. The number of mismatched pairs between

the predicted segmentation and the ground truth then becomes the numerator. For

example, in the ground truth, each sentence in the third pair denoted in the red arrow

belongs to different segments. On the other hand, they belong to the same segment in
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the predicted segmentation. This result is called a mismatch between the ground truth

and the prediction, and it increases the numerator of Pk. In this example, there are no

additional mismatches in the other four pairs. Therefore, the Pk is finally calculated as

1/5 = 0.2.

As we’ve seen in the example, Pk measures the number of mismatched pairs out of

the total number of pairs. Thus, it has a value in the range of [0, 1]. Values closer to

zero indicate that the predicted segmentation is closer to the ground truth because Pk is

increased by the mismatch between the ground truth and the predicted segmentation.

In this project, the window size k is set to half of the average ground truth segment

length as suggested by Pevzner and Hearst [35]. This setting is the same as that of many

previous studies [37, 14, 26, 51]. In our experiment, the first segment boundary of each

script is excluded from the evaluation, because it is always the first sentence of the

script.



Chapter 3

Dataset and Task Overview

This chapter presents detailed information about our conversational dataset, the AMI

Meeting Corpus [32], which was recorded and collected to support multi-disciplinary

research. This corpus was chosen because (1) it is topic-annotated natural conversations

that occurred in the real world, (2) it involves conversations in a practical domain: busi-

ness meetings, and (3) it provides a higher degree of variability in speaking patterns due

to the large proportion of meetings in which non-native English speakers participated.

Then, this chapter provides a brief overview of the topic segmentation task in

the context of the chosen dataset. In this project, topic segmentation is regarded as a

sequence labelling task. The objective of this task is to predict whether each utterance

given as input is a segment boundary or not. Again, the final goal of this project is to

verify if clustering-based inter-training can improve the model’s performance on this

task.

3.1 AMI Meeting Corpus

The AMI Meeting Corpus contains 100 hours of meeting records that consist of 171

scripts. Out of the 171 scripts, 139 are annotated with the topic information. Although

the entire corpus was collected in two different parts, elicited scenario data and non-

scenario data, all of the scripts with topic annotation involve elicited scenario data.

Therefore, in this project, we used 139 scenario meeting scripts as our dataset.

In the elicited scenario meeting, there are typically four participants. These partici-

pants play four different roles as employees in an electronics company. In the elicited

scenario, the company has decided to develop a new type of television remote control

because those found in the market are not user-friendly, and are also unattractive and

16
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old-fashioned.

3.1.1 Structure of Meeting Scripts

3.1.1.1 Definition of Terms and Hierarchical Structure

Topic Spk Uttr Sent Caption

evaluation A U1 S1 Okay.

of project’s S2 Uh so let’s talk about our bonuses and ...

process B U2 S3 Mm.

A U3 S4 Right, right.

C U4 S5 That’s it.

S6 um I think another couple of days holiday ...

equipment C U5 S7 Let’s see if I can get this bloody thing to ...

issues S8 Whoops.

A U6 S9 Uh maybe we should start cleaning up the ...

Table 3.1: An example of a meeting script from the AMI Meeting Corpus. It illustrates

the hierarchical structure of segments, utterances, sentences, and words. The column

names ‘Spk’, ‘Uttr’, and ‘Sent’ denote ‘Speaker’, ‘Utterance’, and ‘Sentence’, respectively.

In written text data, a ‘word’ is defined as a set of alphabetical characters separated

by spacing, and a ‘sentence’ is defined as a set of words separated by specific special

characters, e.g., period or question mark. These definitions for word and sentence are

the same in conversational data. However, conversational data has one characteristic

that is different from the written text: conversations typically take place in the form

of two or more participants talking alternately. Accordingly, we need to define the

concept of ‘utterance’ when working with conversational data. In other words, one

participant can utter several sentences consecutively at once, which is referred to as

‘utterance’. Therefore, a meeting script has a hierarchical structure that consists of

segments, utterances, sentences, and words, as illustrated in Table 3.1. The formal

definitions of the terms are as follows:

• Script (Document): A set of segments that involve several different topics.

• Segment: A set of multiple utterances.

• Utterance: A set of sequential sentences in which one speaker utters.



Chapter 3. Dataset and Task Overview 18

• Sentence: A set of words separated by specific special symbols in an utterance.

• Word: A set of alphabetical characters separated by spacing in a sentence.

The dashed line in Table 3.1 represents a topic segmentation. The topic is changed

from evaluation of the project’s process to equipment issues. One remarkable thing is

that topic segmentation in our dataset takes place at the utterance level but not at the

sentence level. In other words, segmentation always occurs after the final sentence of an

utterance and does not occur in any earlier sentence spoken in the utterance. Therefore,

in this project, the minimum unit when identifying segmentation is an utterance.

3.1.1.2 Predefined Topics

The AMI Meeting Corpus has 24 topics that were predefined during the annotation

phase. For example, each segment may belong to a topic such as ‘cost’, ‘trend watching’,

or ‘equipment issues’. Segments that do not belong to one of the 23 predefined topics

were annotated as ‘others’. This predefined topic information is utilised to set the

candidate numbers of clusters in the k-means. Considering that the ‘others’ category

can contain several different topics, 30 is chosen as one of the experimental numbers of

clusters. 10 and 50 are additionally selected to investigate how the performance changes

as the number of clusters increases or decreases.

3.1.1.3 Segment Granularity

It is notable that segments can be nested. One segment may include multiple segments

of different topics, which means that the granularity of each segment may be different.

This structure is described in Table 3.2, which uses the ES2015d script as an example.

The segmentation and topic information are denoted by the delimiter ‘========’. The

numbers following the segment delimiter indicate different levels of segment granularity.

The larger the number is, the higher the granularity is. In this example, an equipment

issue occurred while the participants were discussing the cost. After the equipment

issue was fixed, they continued to talk about the cost. Thus, we can confirm that the

‘equipment issues’ segment is nested by the ‘cost’ segment.
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Speaker: Utterance

========, 1, cost.

PM: Alright, now with that over and done with, our next step is to see if we are ...

========, 2, equipment issues.

PM: And um my computer’s frozen. And now it’s now (...)

ME: Sorry. Are you gonna do that? Okay.

PM: I’m going to um steal a cable. Um it’s it’s um

(...)

PM: Okay here we go. So we need to tally up how much our product will cost (...)

ID: Yeah. Yeah.

Table 3.2: Segment granularity: the segment of higher granularity ‘equipment issue’ is

nested by the segment of lower granularity ‘cost’.

Identifying segment boundaries with a high-level granularity can be more chal-

lenging because they are more obscure. In addition, as we have seen in the previous

examples, high-level topic changes may occur unexpectedly and disrupt the overall flow

of conversation. Thus, considering high-level topics can cause unnecessary noise when

identifying low-level segment boundaries, which would hurt the overall performance.

Therefore, in this work, we only considered the bottom-level segment boundaries which

indicate the overall flow of a conversation.

3.1.1.4 Participant Roles

As mentioned earlier, each participant plays a different role during a meeting. Each of

the roles is described as follows [32]:

• Project Manager (PM): The project manager is responsible for the overall coordi-

nation. The PM also ensures that the project is carried out within the scheduled

time and allocated budget.

• Marketing Expert (ME): The marketing expert identifies the user requirements,

watches market trends, and evaluates prototypes.

• User Interface Designer (UI): The user interface designer is responsible for the

user interface and technical functions.

• Industrial Designer (ID): The industrial designer is in charge of designing how

the remote control works including the componentry.
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The prior studies showed that considering the speaker’s information, especially the

speaker’s role, helps detect segment boundaries [24, 48]. According to these findings,

we also utilise speaker information in this project. The speaker’s role is added to each

utterance in the script.

3.1.2 Corpus Split and the Statistics

Table 3.3 shows the statistical details of the AMI Meeting Corpus. In the experiment

of this project, the entire corpus is split into training, development, and test sets in

accordance with the division suggested by the official AMI Meeting Corpus website.

Therefore, each split contains 95, 24 and 20 scripts, respectively. The size of the training

set can vary according to the simulated low-resource conditions, which is explained in

Section 4.2.2.

AMI Meeting Corpus Counts

Total number of meetings 59

Total number of scripts 139

Total number of segments 1,107

Total number of utterances 29,215

Total number of sentences 50,161

The average number of segments in a script 7.96

The average number of utterances in a segment 26.39

The average number of sentences in an utterance 1.71

Table 3.3: The detailed statistics for AMI Meeting Corpus.

3.2 Task Overview

In this work, we cast conversational topic segmentation as a sequence labelling problem.

In other words, a meeting script is considered to be a set of consecutive utterances,

each of which is an input for the segmentation model. The objective of our task is to

correctly predict whether each utterance is the start of a new segment or not. This task

is illustrated in Table 3.4. It describes the same script shown in table 3.1; however, the

speaker information and sentence index have been removed, and a beginning of a new

segment has been marked.
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Topic Uttr Caption New

Segment

evaluation ... ... ...

of project’s U1 Okay. Uh so let’s talk about our bonuses and the ... 0

process U2 Mm. 0

U3 Right, right. 0

U4 That’s it. um I think another couple of days ... 0

equipment U5 Let’s see if I can get this bloody thing to work ... 1

issues U6 Uh maybe we should start cleaning up the clay. 0

Table 3.4: Topic segmentation task can be cast as a sequence labelling problem. The

column name ‘Uttr’ denotes ‘Utterance’.

The beginning, rather than the end, of each segment, is labelled with 1. This setting

is due to the result from our preliminary experiment, which shows that the clustering

algorithm can better capture the similarity between utterances indicating a new segment.

This setting is different from that used in Xing et al. [51] in which the baseline model of

our experiment was incurred. However, the same setting was used in many other studies

[3, 31, 41].
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Methodology

This chapter illustrates the methodology we used to test our hypothesis and answer our

research questions. First, we illustrate the architecture of our baseline model. Then, the

detailed settings of the experiments concerning each research question are presented in

the experimental design section.

4.1 Baseline Model Architecture

The favourable model architecture in recent studies on topic segmentation is a hier-

archical neural network that consists of two sub-networks. In the experiment, we use

Enhanced Hierarchical Attentional Bi-LSTM Network (HAN) [51] as our baseline

model. It was chosen as a baseline because (1) it has the architecture that has been

preferred in recent studies, and (2) it is not too complex to verify the effectiveness of

inter-training. In addition, this model demonstrated competitive performance not only in

the intra-domain evaluation but also in the domain transfer and multilingual evaluation.

This model was proposed to address topic segmentation as a sequence labelling task

in a supervised manner. It consists of two sub-networks: an utterance encoder and a label

predictor, which are illustrated in Figure 4.1. The utterance encoder generates utterance

embeddings from two different pre-trained word embeddings: word2vec [33] and BERT

embeddings [11]. In the utterance encoder, self-attentional Bi-LSTM [29] takes the

word2vec word embeddings as input and generates utterance embeddings. It is concate-

nated with BERT utterance embedding and then used as a final utterance embedding.

Each of these utterance embeddings is devised for a specific purpose. Self-attentional

word2vec embeddings are used to obtain task-specific utterances representations and

BERT embeddings are used to better deal with unseen text in the test data, and thus

22



Chapter 4. Methodology 23

Figure 4.1: The architecture of the baseline model [51]. It consists of two sub-networks:

utterance encoder and label predictor.

improve the model’s generality. The concatenated final utterance embeddings are given

as input to the label predictor.

The label predictor is a Bi-LSTM network that takes concatenated utterance embed-

dings as its input and then outputs the probability that the corresponding utterance is a

segment boundary. The utterances whose probability is over a threshold τ are predicted

as segment boundaries, which are denoted as 1 in Table 3.4. The hyper-parameter τ is

optimized on the development set during the training. To clarify, in the experiment, no

modifications were made to the baseline model architecture since this project focuses

on the effectiveness of the intermediate training, not a new model with different archi-

tecture. Instead, two different training processes were applied to the baseline model,

and then their results were compared. These two different training process setups are

illustrated in the next section.

4.2 Experimental Design

This section presents a high-level overview of the experiments. Subsequently, it provides

the details of the experiments and clarifies what research question each setting of the

experiment aims to answer. Additionally, the underlying assumptions that need to be

verified in the experiment are presented.
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4.2.1 Overview with Training Process Setups

Figure 4.2: Standard fine-tuning setup (Top) and advanced fine-tuning setup (Bottom).

Advanced fine-tuning includes intermediate training and standard fine-tuning. (*) denotes

the segmentation model which consists of two sub-networks.

Figure 4.2 illustrates two different training process setups: standard fine-tuning

setup and advanced fine-tuning setup. The former is the existing training process for

standard transfer learning described in Section 2.2.1. We suggest applying an advanced

fine-tuning setup to conversational topic segmentation, which comprises pre-training,

clustering-based intermediate training, and fine-tuning. The intermediate training can

be considered a type of behavioural fine-tuning described in Section 2.2.2. The primary

objective of our experiment is to compare the performance of the baseline model trained

through each setup and hence to answer the following research questions:
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RQ1 Can the clustering-based intermediate training improve the performance of seg-

mentation for conversational data?

As mentioned earlier, the paucity of labelled data is common in conversational

data. To examine the effect of inter-training in practical settings, we simulated

low-resource conditions. That is, we repeatedly compared the performances of

the baseline model, trained with standard and advanced fine-tuning setups, in

the settings of different proportions of labelled data. The detailed settings for

low-resource conditions are described in Section 4.2.2.

RQ2 Can we exploit our knowledge of the test domain during clustering to generate

better intermediate labels?

Prior knowledge of the test domain was used to set the hyper-parameter of the

clustering algorithm. That is, we set the number of clusters k based on the number

of predefined topics in the AMI Meeting Corpus. The segmentation performance

was compared with those of models inter-trained with different cluster counts.

Additionally, the effect of an increased or decreased number of clusters on the

segmentation performance was analysed.

In the following section, the simulated low-resource conditions are depicted. Sub-

sequently, we clarify the terms concerning the labels and illustrate the process of

generating intermediate targets through clustering. Finally, we present the detailed set-

tings of pre-training, fine-tuning, and inter-training phases with respect to the research

questions.

4.2.2 Simulated Low-resource Conditions

Although every sample in our dataset is topic-annotated, in a practical setting, it is

more common that only a fraction of the dataset has labels. Accordingly, we simulate

low-resource conditions in our experiment. To be specific, we fine-tune the model with

the different proportions of labelled samples. Six different settings of proportion are

used in the experiment, each of which has roughly 100%, 50%, 30%, 20%, 15% and

10% of the labelled scripts. Table 4.1 represents the detailed statistics for six different

proportions of labelled data. Notably, the inter-training is not affected by these settings

because it is based on the unsupervised clustering algorithm.
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Proportion 100% 50% 30% 20% 15% 10%

Total number of scripts 95 50 30 19 15 8

Total number of segments 731 390 264 157 143 64

Total number of utterances 19139 9333 5938 3465 2017 1041

Table 4.1: Detailed statistics for different proportions of labelled data. The proportion is

approximately based on the number of scripts, not the number of segments or utterances.

4.2.3 Clustering: Generation of Intermediate Target

4.2.3.1 Description for Various Labels

To clarify the explanation, three different labels are described as follows:

• Segment Boundary Label

This label indicates whether each utterance is the start of a new segment or not.

It can be shortened as ‘Boundary Label’. This is the final target in the topic

segmentation task and was used in fine-tuning phase.

• Cluster Label

This label is generated through clustering. It indicates to which cluster each

utterance was assigned in k-means clustering. It was given as a target in the

intermediate training phase, thus it can be referred to as an intermediate target.

• Topic Label

This label indicates to which predefined topic each segment belongs. The prede-

fined topics in the AMI meeting corpus are described in Section 3.1.1.2. It was

not directly used in our experiment but was used to analyse the relationship with

the cluster label.

4.2.3.2 Generation of Cluster Label

As mentioned earlier, clustering labels are generated by applying the k-means algorithm

to the utterance embeddings. The utterance embeddings can be obtained by applying

various pooling strategies to the pre-trained word embeddings. In our experiment,

following previous studies [51, 48], utterance embeddings were obtained by applying

mean pooling to the second to last hidden layer of BERT.
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Figure 4.3: Generation of cluster labels.

The generation of cluster labels is illustrated in Figure 4.3. According to the sim-

ulated low-resource conditions, only a portion of training data has topic labels and

boundary labels. Cluster labels can be generated regardless of whether the sample is

annotated or not. Accordingly, the inter-training can take not only annotated but also

unannotated samples as its training data. In contrast, only annotated samples can be

used in the fine-tuning phase. Therefore, the clustering-based inter-training gives the

segmentation model a chance to leverage unannotated samples.

4.2.3.3 Settings to Identify Relationships between Labels

We expect the cluster label classification task is related to the segment boundary clas-

sification task. Specifically, the first research question ‘H1 : Can the clustering-based
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intermediate training improve the performance of segmentation for conversational data?’

is based on the following assumptions:

• Assumption 1: The intermediate targets (cluster labels) are correlated with the

final targets (segment boundary labels).

• Assumption 2: Given that Assumption 1 is true, the information obtained while

learning to classify intermediate targets can help better classify final targets.

In the first assumption, we are assuming that the clustering algorithm can assign

semantically similar utterances to the same cluster. To verify the assumption, we perform

the χ2 independence test between (1) the cluster labels and segment boundaries, and (2)

the cluster labels and topic labels. Additionally, if the cluster labels are correlated with

either segment boundaries or topics of segments, we calculate Cramer’s V statistic to

estimate how much correlation exists. Cramer’s V statistic is a measure of association

between two nominal variables, giving a value between 0 and 1. The corresponding

results can be found in Section 5.1.

4.2.3.4 Settings for Investigating the Effect of Prior Knowledge

In k-means clustering, the number of clusters k is a hyper-parameter that we need to

set manually. In our experiment, to answer the second research question ‘H2 : Can

we exploit our knowledge of the test domain during clustering to generate better

intermediate labels?’, we set k based on our prior knowledge of the test domain, namely,

the number of predefined topics. The AMI meeting corpus has 24 different ground truth

topics, including ‘others’. Considering that ‘others’ can indicate several different topics,

we set the default value of k to 30. In order to compare the performance of the default

setting, 10 and 50 were selected as candidate values of k. 50 came from the previous

study [38] and was chosen to examine the effect of bigger cluster counts. Similarly, 10

was selected to investigate the effect of smaller cluster counts.

In summary, we trained the baseline model through the standard fine-tuning setup

without inter-training. For comparison, we trained the baseline model through the

advanced fine-tuning setup with inter-training three times separately. In each inter-

training, cluster labels generated with different k (10, 30, and 50) were used. The

performances of trained models were compared based on the Pk metric. These training

and performance comparisons were repeated with six different proportions of labelled

data, from 100% to 10%. The corresponding results are presented in Section 5.2.
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4.2.4 Details of Each Training Phase

4.2.4.1 Pre-training Phase

The baseline model utilizes word2vec embeddings trained on the GoogleNews dataset

and BERT embeddings trained on Wikipedia and Books corpus. Pre-training refers

to the phase where BERT and word2doc models were trained on these large, generic

corpus. There was no modification to the standard pre-training phase in our experiments.

4.2.4.2 Fine-tuning Phase

In fine-tuning phase, the model was trained on a labelled task-specific dataset, taking

utterance embeddings as input features and segment boundary labels as targets. The

cross-entropy loss was used as a cost function. In this work, task-specific dataset means

AMI meeting corpus. Notably, unannotated samples cannot be used to fine-tune the

model because they do not have segment boundary labels. In other words, in Figure 4.3,

only the samples denoted in blue can be used in fine-tuning, while the samples marked

in red cannot be leveraged.

Fine-tuning is different in each training setup. In the standard fine-tuning, the size

of the top layer in the label predictor was set to 2, which indicates whether the input

is a segment boundary or not. In the advanced training process, the fine-tuning started

from the inter-trained model. The inter-trained model already had the top layer of size

k, which indicates the number of clusters. In this case, the inter-trained top layer was

replaced with a randomly initialised layer whose size is 2. The other inter-trained layers

in the label predictor remained and were further updated in fine-tuning phase.

In our baseline model, the weights not only in the sentence encoder but also in the

label predictor were updated in this phase. In other words, the bottom-level sub-network

in the model was trained to obtain utterance embeddings which are more suitable for

our task. At the same time, the weights in the label predictor were also updated to better

predict the segment boundaries with those utterance embeddings. For convenience, this

entire training process is referred to as fine-tuning in our experiments.

4.2.4.3 Intermediate Training Phase

The inter-training can be considered to be an approach to bridge the gap between

different tasks: MLM and NLP in pre-training and segment boundary classification in

fine-tuning. To this end, inter-training was performed between these two phases. To be
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specific, before training the model to predict the segment boundary, the final target of

our task, we trained the model with cluster labels generated through clustering. As same

as fine-tuning, inter-training also used cross-entropy loss as a cost function. The top

layer of the segmentation model had the size of k indicating the number of clusters.

As mentioned earlier, we expect that the model is able to obtain useful information

for classifying segment boundaries, while learning how to classify cluster labels, espe-

cially from the samples that the model cannot see in fine-tuning phase. These samples

are denoted in red in Figure 4.3. In detail, we expect different benefits of inter-training

on utterance encoder and label predictor. First, we expect that the utterance embeddings

generated after inter-training are contextualized across the cluster labels, which are

correlated with segment boundary labels. Secondly, we expect that inter-training can

give a better parameter initialization to the label predictor.
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Results and Discussion

This chapter summarises research questions that were broken down in the previous

chapter. Afterwards, the experimental results and interpretations corresponding to each

research question are presented. The detailed research questions and related assumptions

can be summarised as follows:

RQ1 Can the clustering-based intermediate training improve the performance of seg-

mentation for conversational data?

RQ1−1 Are the intermediate targets correlated with the final targets?

RQ1−2 Given that RQ1−1 is true, can the information obtained while learning to

classify intermediate targets help better classify final targets?

RQ1−3 Does the effectiveness of inter-training change with the proportion of la-

belled data?

RQ2 Can we exploit our knowledge of the test domain during clustering to generate

better intermediate labels?

RQ2−1 When we set the hyper-parameter utilising the knowledge of the test domain,

does the model outperforms those with different values of hyper-parameter?

RQ2−2 How does the segmentation performance change with an increased or de-

creased number of clusters?

5.1 Analysis of the Relationship between Targets

The section aims to answer the research question ‘RQ1−1 : Are the intermediate targets

correlated with the final targets?’ More specifically, this question can be divided into

two assumptions to be verified as follows:

31
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• Intermediate targets are directly correlated with final task targets.

• Intermediate targets are correlated with topic labels, which are associated with

final targets. In other words, intermediate targets are indirectly correlated with

the final task targets.

Table 5.1 presents the result of χ2 independence test between (1) cluster labels and

boundary labels, and (2) cluster labels and topic labels, in the first and second row,

respectively. It is clear that cluster labels are dependent on both segment boundary

labels and topic labels.

χ2 (p-value) Cluster Labels

k=10 k=30 k=50

Boundary Labels 836.38 (<0.0001) 2034.26 (<0.0001) 2030.89 (<0.0001)

Topic Labels 1386.75 (<0.0001) 4030.06 (<0.0001) 5897.22 (<0.0001)

Table 5.1: χ2 statistics and p-values obtained by the independence test.

Based on the independence test results, Cramer’s V statistics were obtained to

investigate how strong the correlations between labels are, and the corresponding results

are presented in Table 5.2. Cramer’s V measures the association between two nominal

variables, giving a value between 0 and 1. It is generally accepted that the range of (0,

0.2], (0.2, 0.6] and (0.6, 1] indicates a weak, moderate and strong association between

categorical variables, respectively. Cluster labels showed the greatest correlation with

boundary labels and topic labels when k was 30 and 50, respectively.

Cramer’s V Cluster Labels

k=10 k=30 k=50

Segment Labels 0.2090 0.3260 0.3257

Topic Labels 0.0897 0.1053 0.1273

Table 5.2: Cramer’s V statistics between the labels.

However, we need to note that the result between topic labels and cluster labels when

k = 50 is less reliable. This is because the basic assumption of the test was not satisfied,

which is that ‘the expected value of each cell should be greater than 5’. In addition,
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Cramer’s V statistics tend to increase as the number of cells in the contingency table

between two variables increases, without strong evidence of a meaningful correlation

[10]. Despite such tendency, the greatest correlation between boundary and cluster

labels was observed when k was 30, which implies the correlation was strongest when k

was set based on the prior knowledge of the test domain.

A natural explanation for the contribution of inter-training to the final performance is

that cluster labels are informative with respect to target task labels. In other words, if the

segment boundary distribution varies depending on the clusters, the cluster information

can be useful when predicting the boundaries. To examine this, we investigated whether

that conditional probability P(Boundary = 1|Cluster) changes according to the clusters.

On the other hand, even when some specific clusters have distinct boundary distributions

from others, the usefulness of cluster information may be limited, if only a few segment

boundaries belong to those clusters. This is because, in this case, cluster information

helps predict only a few segment boundaries. Accordingly, we also explore how many

segment boundaries belong to the clusters with a relatively high conditional probability.

Tables 5.3, 5.4, and 5.5 show the conditional probabilities and the frequencies of

the boundary labels when k=10, 30 and 50, respectively. These tables are sorted in de-

scending order according to the second column, conditional probability P(Boundary =

1|Cluster).

P(Boundary|Cluster) Counts (Cumulative Prop.)

Cluster C Boundary=1 Boundary=0 Boundary=1 Boundary=0

C2 0.16 0.84 186 (0.25) 962 (0.05)

C7 0.08 0.92 197 (0.52) 2373 (0.18)

C4 0.06 0.94 168 (0.75) 2701 (0.33)

C8 0.04 0.96 61 (0.84) 1592 (0.41)

C3 0.01 0.99 28 (0.88) 2078 (0.53)

C6 0.01 0.99 33 (0.92) 2926 (0.69)

C0 0.01 0.99 23 (0.95) 2152 (0.80)

C1 0.01 0.99 15 (0.97) 1443 (0.88)

C9 0.01 0.99 17 (0.99) 1825 (0.98)

C5 0.01 0.99 3 (1.00) 356 (1.00)

Table 5.3: Conditional probability and the counts of segment boundaries (k = 10).
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Table 5.3 shows the result when k = 10. Using the first row as an example, the

total number of utterances belonging to cluster C2 is 1148, and there are 186 segment

boundaries and 962 non-segment boundaries. The total number of segment boundaries

across the clusters is 731, and thus, those belonging to C2 account for 25% (=186/731)

of the total number of segment boundaries. The conditional probability P(Boundary =

1|Cluster =C2) is computed as 186/1148=0.16; similarly, P(Boundary = 0|Cluster =

C2) is calculated as 962/1148=0.84.

From the second column of the table, it is clear that the conditional probability

P(Boundary = 1|Cluster) for cluster C2, which is 0.16, is significantly higher than that

of the other clusters. Thus, the segmentation model can assign a higher probability of

segment boundary to the utterances in cluster C2. In addition, the segment boundaries

in cluster C2 account for 25% of the total number of segment boundaries. Clusters C7,

C4 and C8 also have a relatively higher probability, considering that the remaining six

clusters have a probability of 1%. The segment boundaries within these four clusters

make up 84% of the total number of segment boundaries. Therefore, we can expect that

the cluster information help predicts many segment boundaries.

P(Boundary|Cluster) Counts (Cumulative Prop.)

Cluster C Boundary=1 Boundary=0 Boundary=1 Boundary=0

C23 0.35 0.65 135 (0.18) 248 (0.01)

C9 0.20 0.80 114 (0.34) 453 (0.04)

C13 0.18 0.82 63 (0.43) 282 (0.05)

C20 0.12 0.88 101 (0.56) 737 (0.09)

C0 0.04 0.96 45 (0.63) 1023 (0.15)

C4 0.04 0.96 20 (0.65) 466 (0.17)

... ... ... ... ... ... ...

C27 0.00 1.00 3 (0.99) 742 (0.96)

C19 0.00 1.00 1 (1.00) 688 (0.99)

C26 0.00 1.00 0 (1.00) 8 (1.00)

Table 5.4: Conditional probability and the counts of segment boundaries (k = 30).

Table 5.4 represents the results and analysis when k = 30. These results make it

increasingly clear that the information learnt while training to distinguish clusters can

help predict segment boundaries. For convenience, the clusters with a probability of
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more than 10% are referred to as clusters with a high probability. Clusters C23, C9,

C13 and C20 have significantly higher P(Boundary = 1|Cluster) than other clusters.

In the case of cluster C23, the conditional probability is 35%, which is remarkably high.

Moreover, segment boundaries belonging to these four clusters account for 56% of the

total segment boundaries. Therefore, when the model assigns a higher probability of

segment boundary to the utterances belonging to the four clusters, it is expected that the

segmentation model’s overall performance will improve.

P(Boundary|Cluster) Counts (Cumulative Prop.)

Cluster C Boundary=1 Boundary=0 Boundary=1 Boundary=0

C16 0.39 0.61 74 (0.10) 114 (0.01)

C17 0.35 0.65 97 (0.23) 184 (0.02)

C24 0.21 0.79 83 (0.35) 319 (0.03)

C46 0.15 0.85 21 (0.38) 119 (0.04)

C49 0.13 0.87 41 (0.43) 276 (0.05)

C23 0.10 0.90 43 (0.49) 376 (0.08)

C26 0.10 0.90 27 (0.53) 254 (0.09)

C11 0.07 0.93 22 (0.56) 300 (0.11)

... ... ... ... ... ... ...

C32 0.00 1.00 2 (1.00) 643 (0.97)

C42 0.00 1.00 0 (1.00) 218 (0.98)

C39 0.00 1.00 0 (1.00) 140 (0.99)

C10 0.00 1.00 0 (1.00) 2 (0.99)

C0 0.00 1.00 0 (1.00) 169 (1.00)

Table 5.5: Conditional probability and the counts of segment boundaries (k = 50).

Table 5.5 shows the results when k = 50. Similar patterns observed in 5.3 and 5.4

are found here as well. However, we can find several trends suggesting that the number

of clusters is unnecessarily large. For example, clusters C42, C39, C10, and C0 all

contain zero segment boundaries, and thus it is unnecessary to accurately distinguish

these four clusters for our final purpose. In addition, more clusters are required to cover

the same proportion of segment boundaries compared to when k=30. Specifically, when

k=30, four clusters with a probability of greater than 10% account for 56% of the

total number of segment boundaries. In contrast, when k = 50, eight clusters with a
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probability of greater than 7% are required to account for the same proportion of the

segment boundaries.

In summary, there is a correlation between clustering-based intermediate targets

and segment boundary targets. In addition, the result showed the greatest correlation

when k = 30, which was set based on the ground truth number of predefined topics.

With the same value of k, the largest amount of segment boundaries benefitted from

cluster information. Finally, P(Boundary = 1|Cluster) was significantly high in specific

clusters. These results suggest that if the segmentation model can predict the cluster

labels, the cluster information can be leveraged to identify the segment boundaries.

5.2 Analysis of the Effect of Inter-training

5.2.1 Effect of Labelled Data Proportions

This section aims to answer two research questions: RQ1−2 and RQ1−3. The perfor-

mance of the baseline model with and without inter-training is presented in Table 5.6

and illustrated in Figure 5.1. It is worth reminding that Pk is an error-based metric as

described in Section 2.5. Therefore, the lower Pk indicates better, increased performance.

Pk

Proportion Fine-tuning Inter-training → Fine-tuning Performance

of Labels k=10 k=30 k=50 Gain (∆)

100% 0.2115 0.2091 0.2153 0.2138 0.0024

50% 0.2121 0.2181 0.2020 0.2159 0.0101

30% 0.2280 0.2260 0.2203 0.2238 0.0077

20% 0.2576 0.2481 0.2487 0.2499 0.0095

15% 0.2742 0.2667 0.2600 0.2715 0.0142

10% 0.2969 0.2843 0.2731 0.2831 0.0238

Table 5.6: Summarised result of the experiment. The best performance in each row is

marked in bold. The column ‘Performance Gain’ designates the difference in Pk between

the standard fine-tuned model and the best model.
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Figure 5.1: (Left) The performance changes of four models according to the proportions

of labelled data. The blue line denotes the performance of the model trained through a

standard fine-tuning setup. The other three lines designate that of the models trained

through advanced fine-tuning setup, with different values of k. (Right) Performance

improvement of the advanced fine-tuned model compared to the model without inter-

training, with respect to the proportion of labelled data.

RQ1−2 Can the information obtained while learning to classify intermediate targets help

better classify final targets?

In Table 5.6, each row denotes the change in the proportion of labelled data.

Regardless of the proportions, the best performance of each row is observed from

a model with inter-training. Among others, the advanced fine-tuned model with

k=30 generally performed best.

From the left plot in Figure 5.1, it is clear that the models’ performances decrease

as the proportion of labelled data drops. According to the performance without

inter-training, Pk remained nearly the same when the proportion of labelled data

was reduced from 100% to 50%. However, it decreased significantly as the

proportion decreased to 30%, 20%, 15% and 10%. Similar patterns were found

in the models with inter-training, but the decreases were relatively low. That is,

the model with inter-training showed relatively better performance as the labelled

data decreased.

RQ1−3 Does the effectiveness of inter-training change with the proportion of labelled
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data?

The right plot of Figure 5.1 represents the effect of inter-training with regard to

the proportion of labelled data. An increasing trend is observed, which suggests

that the clustering-based inter-training is more effective when the labelled data is

scarce.

5.2.2 Effect of the Number of Clusters

This section aims to answer the research question ‘RQ2 : Can we exploit our knowledge

of the test domain during clustering to generate better intermediate labels?’. In the

experiment, the number 30 was set to the default value of hyper-parameter k, based on

the ground truth number of predefined topics in the AMI Meeting Corpus. With answers

to the following two questions, we conclude that the effect of inter-training changes

with the number of clusters k, and the prior knowledge can be leveraged to optimise it.

RQ2−1 When we set the hyper-parameter utilising the knowledge of the test domain,

does the model outperforms those with different values of hyper-parameter?

Figure 5.1 showed that the model with inter-training outperformed the model

without inter-training regardless of the number of clusters. Among others, as

suggested in the analysis of the relationship between the boundary labels and

cluster labels, the inter-trained model with k = 30 generally performed best. That

is, the model utilising knowledge of the test domain outperformed others.

RQ2−2 How does the segmentation performance change with an increased or decreased

number of clusters?

When the number of clusters k is increased or decreased from the default setting,

the final performance has decreased. The decrease in performance was similar

in both cases. These decreases were expected from the result of Section 5.1,

because the cluster information was the most informative with respect to the

segment boundary label when k = 30: when k = 10, the cluster with the highest

P(Boundary|Cluster) was less distinguishable from others; when k = 50, some

of the clusters were redundant to classifying boundary labels, which may cause

unnecessary noise.
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Conclusions and Future Work

This work studied the effectiveness of clustering-based intermediate training to alleviate

the paucity of labelled data in conversational topic segmentation. In the topic segmenta-

tion, the paradigm of pre-training and fine-tuning has been a common practice to make

the segmentation model more robust and further improve performance. However, recent

studies have found fine-tuning a large pre-trained model often performs considerably

below its potential, when the tasks and data distributions in the two training phases

are significantly different. It becomes more pronounced when a sufficient amount of

labelled data for fine-tuning is not available because the model cannot be fully optimised

on the final task. Hence, research is greatly needed to bridge the gap between the tasks

of two training phases in conversational topic segmentation, where the labelled data is

scarce due to the high dependency on manual annotation.

Advanced fine-tuning, e.g., adaptive fine-tuning and behavioural fine-tuning, has

been proposed to address the gap between pre-training and fine-tuning. Nevertheless,

the research on applying these methods to conversational topic segmentation is limited.

Hence, we suggested applying clustering-based inter-training to this task and then

experimented with its effectiveness in various experimental settings. Additionally, we

investigate whether the knowledge of the test domain can be leveraged to set an optimal

hyper-parameter for clustering.

6.1 Experimental Findings

The experimental findings of this dissertation showed that the model with inter-training

performs better on topic segmentation. It implies intermediate labels generated through

clustering can capture the signal of topic changes. It also suggests that other classifi-

39
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cation tasks at the sentence level can take advantage of clustering-based inter-training.

Additionally, we investigated the effectiveness of inter-training depending on the pro-

portion of labelled data. The result showed that inter-training was more effective when

the labelled data was scarce. Furthermore, the experiment showed that the effect of

inter-training changed according to the number of clusters k, and we empirically con-

firmed that the knowledge of the test domain can be used to optimise k. Specifically,

we showed that the segmentation model performed best when k was set based on the

number of predefined topics in the AMI Meeting Corpus.

6.2 Limitations and Future Work

There have been attempts to simultaneously address text segmentation and topic clas-

sification tasks in a single model [3, 43, 30]. In this project, we focused on topic

segmentation, for which it was more difficult to discern whether inter-training would

be effective, and did not address topic classification. However, according to the experi-

mental results investigating the relationship between labels, the proposed inter-training

is expected to be effective for the topic classification task as well. Accordingly, it is

encouraged for future work on the topic classification with inter-training.

In addition, although it has been studied that various pre-trained models can enhance

the topic segmentation model’s performance [30], the scope of the project is limited

to using BERT. Similarly, it has been demonstrated that more sophisticated clustering

algorithms, such as sequential Information Bottleneck (sIB) [40], can lead to further

improvement on similar tasks [38]. However, we also limited the clustering algorithm to

the most intuitive algorithm: k-means. These limitations were applied to maintain focus

on the primary research questions and simplify the experiments. At the same time, they

also imply potential performance improvements when using other pre-trained models

and clustering algorithms.

Finally, our experiment empirically showed that prior knowledge of the test domain

can be exploited to optimise the hyper-parameter of clustering, and thus result in

better segmentation performance. However, the selection of other candidates for hyper-

parameter, k = 10 and 50, was heuristic and further research on the relationship between

the ground truth number of topics and the optimal k is required. In addition, the

effect of inter-training can change depending on other settings of clustering, e.g., the

centroid initialization strategy. Therefore, it is encouraged that future work explores

more sophisticated methods to find better settings for clustering.
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