
Find My Lyrics - A Search Engine for Lyrics

Taes Hahn
s2123694@ed.ac.uk

Ioana Bacrau
s1738286@ed.ac.uk

Valentine Dragan
s1710228@ed.ac.uk

Perseas Christou
s1984267@ed.ac.uk

October 20, 2022

NOTE: PLEASE CONTACT s2123694@ed.ac.uk WHEN MARKING OUR WEB-
SITE, FOR US TO TURN IT BACK ON. THE URL PROVIDED IN THE SUBMISSION
FORM WORKS TOO, BUT THE YOUTUBE VIDEOS DON’T WORK UNLESS WE
PROVIDE A DIFFERENT DOMAIN NAME.

Contents

1 Introduction: What is Find My Lyrics? 1

2 System Architecture & Design 1

3 Data Layer & Live Indexing Process 2
3.1 Data Sources & Crawling . 2

3.1.1 Metadata: MusicBrainz . 3
3.1.2 Lyrics Data: MusixMatch API . 3

3.2 Processing the Data . 3
3.3 Live Indexing . 3

4 API Layer 4
4.1 Designing an Algorithm for the Usecase of Lyrics Searching 4
4.2 Search Module: Sequence Matching Search and Boolean Search 5
4.3 Ranking & Retrieval Module . 6
4.4 Song Recommendation Module . 6

5 Web Layer & User Experience 7
5.1 User Experience . 7
5.2 Query Handling & Displaying the Results 7
5.3 Expanding a Results with Full Details . 8
5.4 Web pages audit results . 8

6 Staging and Deploying 8

0

Text Technologies for Data Science - Group Project Report

1. Introduction: What is Find My Lyrics?

Figure 1: The User Interface of Find My Lyrics

Find My Lyrics is an innovative app that solves a common problem in an intelligent way.
In this day and age, people might hear a song on TV, on their commute, from friends, or
even from ads and shows. But more often than not, they only remember a few words from
the song - sometimes not even the right words.

Our lyrics search engine solves this problem by employing a novel search algorithm
designed to find the right song even when queries aren’t perfect. Our search engine combines
Live Indexing, a database of over 150k records and growing, specially-designed Search &
Retrieval algorithms, a content-based Recommender System, and a modern User Interface,
to give users effective and efficient results!

2. System Architecture & Design

The diagram of our system architecture is shown in Figure 2 below. As we wanted to build
a modular and easy-to-update search engine, we divided our system into 3 main layers:

1. The Data Layer described in Section 3 is responsible for performing Live Indexing
and storing the index, and databases of song details and lyric embeddings.

2. The API Layer described in Section 4 is responsible for the searching, ranking, and
retrieval processes (using the novel Sequence Matching algorithm), as well as Recom-
mending similar songs that the user might enjoy.

3. The Web Layer described in Section 5 is responsible for rendering the User Interface
and handling user interactions.

1

Figure 2: Our System Architecture showing the 3 modular layers: Web Layer, API Layer,
Data Layer, and the 2 main interactions performed by users.

3. Data Layer & Live Indexing Process

3.1 Data Sources & Crawling

This section describes the ‘Data Layer & Live Indexing Process’ located at the top of
our system architecture in Figure 2. We collected data on the songs released in the last
decade. The metadata and lyrics of the songs were collected from two separate sources and
combined. In our system, metadata and lyrics of 150,175 were collected as initial data, and
those for newly released tracks are automatically updated and collected every week. Our
system has been implemented to be able to retrieve based on initial data and additionally
collected data for new tracks. The detailed conditions for collecting are as follow:

• Released Date: 2013 - 2022 (Recent 10 years)
• Released Country: United Kingdom, United States
• Lyrics Language: English
• Update Cycle: 1 Week (Every Monday)

2

Text Technologies for Data Science - Group Project Report

3.1.1 Metadata: MusicBrainz

First, we collected metadata about the songs from MusicBrainz. MusicBrainz is an open
music encyclopedia that collects music metadata and makes it available to the public. This
data is provided in several forms, among which we used the JSON dump file. The Metadata
for 1,615,281 tracks were collected as initial data, of which 150,175 cases of lyrics were
available to be collected separately.

We utilised only a fraction of the entire data from MusicBrainz, which has a hierarchical
data structure (i.e. Release > Media > Track > Recording). The items extracted from the
entire data to be utilised in our system are as follows:

Data Level Collected Items

RELEASE release id, release title, artist, released country, release date, language
MEDIA media position, media format, media title, media track count
TRACK track position, track id, track title, track artist credits, track isrcs

RECORDING recording isrc (International Standard Recording Code)

3.1.2 Lyrics Data: MusixMatch API

The lyrics data corresponding to the collected metadata was separately collected with ISRC
(International Standard Recording Code) from another data source, MusixMatch. Musix-
Match is a music data company with more than 14 million lyrics databases in 50 distinct
languages. They service a developer REST API for their customers to request lyrics data
from their database.

However, there are two limitations for free API. The first one is the number of daily
requests to API, which means we could request up to 2000 lyrics per day. The second
limitation is the length of the provided lyrics. They only provide first 30% of lyrics per
song. We decided that these restrictions are not a big problem in implementing a system
for academic purposes.

3.2 Processing the Data

The collected data require serveral post-processing.

• Merge data: We merge metadata and lyrics from two different data sources.

• Remove duplicates: Our collected dataset may have duplicated records. The original
dataset treats multiple versions of the same song as distinct records but we want to
treat them as one.

• Remove unnecessary phrase: The MusixMatch API automatically insert unnecessary
phrase to our lyrics data that affect the performance of the search result. It should
be deleted.

• Drop songs whose lyrics data are not available from MusixMatch API.

3.3 Live Indexing

Since new songs are released continuously, updating our database and re-indexing on those
new data are very important tasks for our service. To this end, we periodically update our

3

metadata, by comparing up-to-date data of source with that of our current system. After
updating metadata, our system requests the lyrics through our second data source, Musix-
Match API. And then, The Index module adds this newly collected data into our original
index incrementally. All of these live indexing processes are automatically conducted and
it has been scheduled on the server every Monday.

When the data is indexed, the lyrics are tokenised, lowercased and stemmed. However,
stopwords are not removed because they are much more prevalent and important in songs’
lyrics than normal documents. While indexing, the embeddings for each song are also
generated and stored, which are utilised in Recommender Module described in Section 4.4.

4. API Layer

The API Layer contains the Search, Retrieval, and Recommendation modules as shown
in the System Architecture diagram in Section 2. The algorithms used in for search &
ranking have been tailored specifically to the usecase of lyrics matching, inspired by the
common substring matching problem (often found in the field of bioinformatics). In the
following subsections, we describe the process through which we chose these algorithms,
their implementation details, and the implementation of the Recommendation system.

4.1 Designing an Algorithm for the Usecase of Lyrics Searching

Before designing the algorithms of our IR system, we found it critical to consider the
common use case of such a song-finding search engine. In general, users hear an unknown
song (such as on radio, advertisements, or when shopping) and upon remembering it later,
they search the lyrics in an attempt to find the song. However, this use case presents some
difficulties for standard IR algorithms as shown in Figure 3 below:

Figure 3: Example of a common use-case for searching the lyrics of a song.

As shown, perfect recall of the lyrics is rare, because users often correctly remember
only part of the lyrics due to imperfect memory or language misunderstanding. Secondly,
the recalled words are often sequential, because users often remember a line or sequence of
words, rather than words spread across the song.

4

Text Technologies for Data Science - Group Project Report

These make standard TF-IDF or Proximity search algorithms less effective. To choose
an algorithm suitable for our use case we have performed a ”back-to-front” design thinking
process. We suppose that hypothetically, we know that our correct song is ”Hello” by Adele,
and want to compare how different queries should score against this song relative to each
other. This comparison is shown in Figure 4 below.

Figure 4: Example of the scores we would expect between our target song and different
queries.

Following this process, we argue that our search & ranking algorithms should favour
long continuous sequences of matching words between them and the target songs, while
also taking into account that there might be gaps of words that don’t match throughout
the query. We describe the implementation of this search algorithm below.

4.2 Search Module: Sequence Matching Search and Boolean Search

As justified by the usecase above, the Search Module implements a novel Sequence Matching
algorithm which is inspired from the Common Substring Matching problem.

Algorithm 1 Sequence Matching Algorithm, based on Common Substring Matching

Given a list of processed query terms Q and a song S, we want to compute the longest
matching sequences between Q and S
M ← {} ▷ list of matching sequences between Q and S
for each term Qi in the query do

for each position pj at which the term Qi appears in the song S do
while Qi+1 also appears on pj+1 do ▷ O(1) lookup with hashed inverted index

Extend the matching sequence

Add the matching sequence to M

Remove overlapping sequences from M that are caused by repeating lyrics (using Interval
Merging algorithm) ▷ O(M ∗ log(M)), but M is negligible in size on average

Algorithm Complexity: O(Q ∗ p+M ∗ log(M)) ≈ O(Q ∗ p)

5

The algorithm above is used to calculate the common matching sequences between a
query Q and a song S. To further increase the speed of the Search Module, two optimisation
choices were made. Firstly, an initial lookup is performed on the Index to select songs which
contain at least 30% of the query terms (an experimentally chosen threshold), so that only
songs with ”potential to be high-scoring” are searched. Secondly, using a hashed inverted
index allows us to compute the maximum matching sequence in negligible time.

Boolean Search. In the rare cases that no results have been found through the Se-
quence Matching Search (sometimes due to very short queries), we then employ a Boolean
Search and return the results that contain the most unique terms from the query.

4.3 Ranking & Retrieval Module

The Ranking and Retrieval Module ranks the results from the Search Module according to
their found matches, and retrieves the details of these songs from the database. The score
between a query Q and a song S is calculated as a percentage (between 0% - 100%), and
given the list of matched sequences M is calculated as:

∑
m∈M

|m|1.5

|Q|1.5

After the results are ranked, the details of the paginated songs (as described in Section
5) are retrieved from the database and snippets are generated to display the matching lyrics.

4.4 Song Recommendation Module

Motivation and General Idea.

In order to make our search engine more useful to users, we added a content-based
Song Recommendation System to our website. This is particularly important since finding
lyrics for songs by itself does not provide further usage to our users apart from displaying
good results. Therefore, we decided to make our website more interactive, and let our users
explore new songs with similar semantics and topics to the ones they search for.

Our Recommendation System is based on Sentence Encodings of the lyrics (using
Google’s Universal Sentence Encoder), and computing cosine similarity between encod-
ings.

Implementation.

In order to implement the Recommendation System, we first used Google’s Universal
Sentence Encoder during the Live Indexing Process described in Section 3 to create embed-
dings for each song’s lyrics, and stored them in a Database of Embeddings. The encoder
is trained in such a way that it can encode big sentences into high dimensional vectors
which capture the words and context of the sentences, making them very useful for text
classification, semantic similarity and other NLP tasks.

Once we have embeddings for every song, we can compute the similarity between two
songs as the cosine similarity between their embedding vectors. We have found this method

6

Text Technologies for Data Science - Group Project Report

to be quite effective at capturing the similar contexts and semantics of songs. Therefore,
when a user clicks on a song result, we use this method to recommend similar songs.

However, computing the similarity between an entire database of 150,000+ embeddings
(each being a 512-dimensional vector) would be highly inefficient in terms of time. We
also found, experimentally, that there is a large number of songs with a ”great similarity
score” (between 0.7 - 0.8), with 1 in 700 songs having such a similarity score. Therefore, to
ensure that our recommendations load up in less than 1 second while also providing good
recommendations, we only select a sample of 2000 songs to compute the similarities on.
From these, the Top 6 songs in terms of similarity score are recommended to the user, via
links that take them to the songs’ lyrics and youtube videos.

We have also experimented with dimensionality reduction of the embedding vectors
using PCA (principle component analysis) to reduce the computation time, but we found
our recommendation results to be better when using the entire 512-dimensional embeddings.
As further work, however, we could perform the computation of cosine similarities for each
song during indexing, and store in the database the top recommended songs for each song.

5. Web Layer & User Experience

5.1 User Experience

For our web app design, we have paid great attention to the UI/UX aspect. We wanted to
create a user interface that is new and invigorating and provides an improved experience
for our users, however we also wanted to allow the user to feel familiar with our design.

For our UI we have analysed our biggest competitors in this area (Google, Genius and
YouTube) and have taken inspiration from their designs, and furthermore for our code we are
using the best and most popular front-end open source toolkit, Bootstrap. We also wanted
to set our own visual mark, so we have put together a logo to help brand our business, but
also used a gradient for our background that is consistent and easily identifiable through all
of our web pages. Another important aspect for our UX was the color pallet for our website:
we are using the orange to purple gradient for the background, orange for special keys (such
as song ids), a mix of grey’s for our other content, and blue for important navigation items
such as search buttons and pagination elements.

5.2 Query Handling & Displaying the Results

For our home page and results page we have used a mix of strategies and models imple-
mented by our best competitor in the area of querying and displaying results, Google, but
we have also added our own interpretation of what elements and items are important based
on our business model.

7

Our home page aesthetically pleasing and minimalist, and it satisfies it’s mail goal: in-
troducing the user to our product and providing the initial search functionality.

Our results page contains a search bar and a paginated list of results (from our Search
Module and Retrieval Module) as well as a results counter and a display of our query speed
result. Each individual result displays the song’s title, author, id, match score as well as a
snippet of the lyrics that matched the user’s query.

5.3 Expanding a Results with Full Details

By clicking on the name of an item in the results page, our users can navigate to the details
page of that song. Our song page is split in 2 sides:

• Left: Lyrics - the main attraction in our business model. To add character we have
decided to opt for a lyrics display straight onto our distinct background.

• Right: Video, search and recommendations - we’re outsourcing the video from YouTube,
and the recommendations list gets generated by the Recommendation Module.

5.4 Web pages audit results

To test our pages we have used Google Chrome’ DevTools Lighthouse. Table 1 below shows
our audit results in terms of Performance, Accessibility, and Best Practices, against our
main 3 competitors.

Lighthouse Performance Accessibility Best Practices

Pages Home Result Item Home Result Item Home Result Item

FindMyLyrics 96 90 83 95 82 83 90 89 67

Google 100 90 92 99 78 92 - - -

YouTube 41 88 92 50 89 92 32 69 92

Genius 79 76 83 58 84 75 59 79 75

Table 1: Page audit comparison

6. Staging and Deploying

We have used GCP to collaborate and host our project. The entire project complete with
data files and other resources is hosted on our Google VM. Initially we planned to deploy
both the code and the configuration to the Google App Engine server. However our de-
ployable service’s dependencies turned out to be not supported by the cloud. We have
remediated this issue by configuring our Google VM to be a staging environment, running
the app on our Flask local server and tunneling the port that the app is running on with
Ngrok (this has also created a DNS for our app which is a dependency for YouTube’s API).
Our app is now available at 3 points: VM external IP, and 2 Ngrok DNS’ over both http
and https.

8

